Pharma Focus Asia
Klöckner Pentaplast - Pentapharm® alfoil® films

Happy Face Tattoo Does Serious Work

Happy Face Tattoo Does Serious Work

A medical sensor that attaches to the skin like a temporary tattoo could make it easier for doctors to detect metabolic problems in patients and for coaches to fine-tune athletes’ training routines. And the entire sensor comes in a thin, flexible package shaped like a smiley face.

“We wanted a design that could conceal the electrodes,” says Vinci Hung, a PhD candidate in the Department of Physical & Environmental Sciences at UTSC, who helped create the new sensor. “We also wanted to showcase the variety of designs that can be accomplished with this fabrication technique.”

The new tattoo-based solid-contact ion-selective electrode (ISE) is made using standard screen printing techniques and commercially available transfer tattoo paper, the same kind of paper that usually carries tattoos of Spiderman or Disney princesses. In the case of the sensor, the “eyes” function as the working and reference electrodes, and the “ears” are contacts for a measurement device to connect to.

Hung contributed to the work while in the lab of Joseph Wang, a distinguished professor at the University of California San Diego. She worked there for six months earlier this year under the Michael Smith Foreign Study supplement from NSERC.

“It was a wonderful opportunity,” Hung said. She worked directly with Wang, who is well-known for his innovations in the field of nanoengineering and is a pioneer in biosensor technology.

The sensor she helped make can detect changes in the skin’s pH levels in response to metabolic stress from exertion. Similar devices, called ion-selective electrodes (ISEs), are already used by medical researchers and athletic trainers. They can give clues to underlying metabolic diseases such as Addison’s disease, or simply signal whether an athlete is fatigued or dehydrated during training. The devices are also useful in the cosmetics industry for monitoring skin secretions.

But existing devices can be bulky, or hard to keep adhered to sweating skin. The new tattoo-based sensor stayed in place during tests, and continued to work even when the people wearing them were exercising and sweating extensively. The tattoos were applied in a similar way to regular transfer tattoos, right down to using a paper towel soaked in warm water to remove the base paper.

To make the sensors, Hung and her colleagues used a standard screen printer to lay down consecutive layers of silver, carbon fiber-modified carbon and insulator inks, followed by electropolymerization of aniline to complete the sensing surface.

By using different sensing materials, the tattoos can also be modified to detect other components of sweat, such as sodium, potassium or magnesium, all of which are of potential interest to researchers in medicine and cosmetology.

Hung’s PhD supervisor at UTSC and a co-author of the paper is Kagan Kerman, assistant professor of bio-analytical chemistry. An article describing the work has been accepted for publication in the Royal Society of Chemistry’s journal, Analyst, and is available on the journal’s website at http://pubs.rsc.org/en/content/articlelanding/2013/an/c2an36422k (DOI: 10.1039/C2AN36422K).

For more information, please contact:
Kurt Kleiner
Managing Editor, Online Communications
Communications & Public Affairs
University of Toronto Scarborough
Phone: 416-287-7008
kkleiner@utsc.utoronto.ca

magazine-slider-imageBIOVIA from Molecule to MedicineMFA + MMA 2024CPHI China || PMEC China 2024Asia Healthcare Week 2024Advance DoE WorkshopCPHI Korea 2024CHEMICAL INDONESIA 2024INALAB 2024 Thermo Scientific - DynaDrive and DynaSpinRehab Expo 2024ISPE Singapore Affiliate Conference & Exhibition 20242024 PDA Cell and Gene Pharmaceutical Products Conference 2024 PDA Aseptic Manufacturing Excellence Conference2024 PDA Aseptic Processing of Biopharmaceuticals Conference3rd World ADC Asia 2024LogiPharma Asia 2024